
RASH Documentation
Release 0.1.3

Takafumi Arakaki

June 12, 2015





Contents

1 What is this? 3

2 Install 5

3 Setup 7

4 Usage 9
4.1 Searching history – rash search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Showing detailed information – rash show . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Interactive search – rash isearch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Dependency 11
5.1 Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.2 Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

6 Design principle 13

7 License 15

8 More resources 17
8.1 RASH command line interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
8.2 RASH configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.3 Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Python Module Index 29

i



ii



RASH Documentation, Release 0.1.3

Links:

• Documentation (at Read the Docs)
– Commands
– Configuration
– Tips

• Repository (at GitHub)
• Issue tracker (at GitHub)
• PyPI
• Travis CI

Contents 1

https://rash.readthedocs.org
https://rash.readthedocs.org/en/latest/commands.html
https://rash.readthedocs.org/en/latest/config.html
https://rash.readthedocs.org/en/latest/tips.html
https://github.com/tkf/rash
https://github.com/tkf/rash/issues
http://pypi.python.org/pypi/rash
https://travis-ci.org/#!/tkf/rash


RASH Documentation, Release 0.1.3

2 Contents



CHAPTER 1

What is this?

Shell history is useful. But it can be more useful if it logs more data points. For example, if you forget which make
target to run for certain project, you’d want to search shell commands that are run in particular directory. Wouldn’t it
be nice if you can do this?:

rash search --cwd . "make*"

RASH records many data points and they are stored in SQLite database. Here is a list of recorded information 1.

1. Current directory ($PWD).

2. Exit code ($?)

3. Exit code of pipes ($PIPESTATUS / $pipestatus)

4. The time command is started and terminated.

5. Environment variable ($PATH, $SHELL, $TERM, $HOST, etc.)

6. Real terminal. $TERM is used to fake programs. RASH can detect if you are in tmux, byobu, screen, gnome-
terminal, etc.

7. Session information. If you go back and forth in some terminals, RASH does not loose in which sequence you
ran the commands in which terminal.

RASH also has interactive search interface. You can see the search result as you type. If you are using zsh, you can
execute the result instantaneously.

1 If you are curious, checkout rash record --help.

3



RASH Documentation, Release 0.1.3

4 Chapter 1. What is this?



CHAPTER 2

Install

RASH is written in Python. The easiest way to install is to use pip (or easy_install, if you wish). You may need sudo
for installing it in a system directory.:

pip install rash
pip install percol # if you want interactive search feature

If you use virtualenv to install RASH, you may have trouble when switching environment. In that case, it is safe to
make an alias to full path of the rash executable.:

alias rash="PATH/TO/VIRTUALENV/bin/rash"

If you want to use developmental version, just clone the git repository and add the following in your RC file.:

alias rash="PATH/TO/RASH/rash_cli.py"

5



RASH Documentation, Release 0.1.3

6 Chapter 2. Install



CHAPTER 3

Setup

Add this to your .zshrc or .bashrc. That’s all.:

eval "$(rash init)"

For more information, see rash init --help.

7



RASH Documentation, Release 0.1.3

8 Chapter 3. Setup



CHAPTER 4

Usage

4.1 Searching history – rash search

After your shell history is accumulated by RASH, it’s the time to make use of the history! See rash search
--help for detailed information. Here is some examples.

Forget how to run automated test for the current project?:

rash search --cwd . --include-pattern "*test*" --include-pattern "tox*"

All git commands you ran in one week.:

rash search --time-after "1 week ago" "git*"

Some intensive task you ran in the current project that succeeded and took longer than 30 minutes.:

rash search --cwd-under . --include-exit-code 0 --duration-longer-than 30m

What did I do after cd-ing to some directory?:

rash search --after-context 5 "cd SOME-DIRECTORY"

All failed commands you ran at this directory.:

rash search --cwd . --exclude-exit-code 0

Count number of commands you ran in one day:

rash search --limit -1 --no-unique --time-after "1 day ago" | wc -l

4.2 Showing detailed information – rash show

If you give --with-command-id to rash search command, it prints out ID number for each command history.:

% rash search --with-command-id --limit 5 "*git*"
359 git log

1253 git help clone
1677 git help diff
1678 git diff --word-diff
1780 git merge

You can see all information associated with a command with rash show command:

9



RASH Documentation, Release 0.1.3

rash show 1677

4.3 Interactive search – rash isearch

Searching history using command line is not fast. You can use rash isearch command to interactively search
history and see the result immediately as you type.

You need percol to use this feature.

Zsh user can setup a keybind like this:

# Type `Ctrl-x r` to start isearch
bindkey "^Xr" rash-zle-isearch

Defining this function in your rc file can be handy and it is usable for bash users.:

rash-isearch(){
eval "$(rash isearch)"

}

10 Chapter 4. Usage

https://github.com/mooz/percol


CHAPTER 5

Dependency

RASH tested against Python 2.6, 2.7 and 3.2. However, as some dependencies are not Python 3 compatible, some
functionality is missing when used with Python 3.

Python modules:

• watchdog 1

• parsedatetime 2

5.1 Platforms

UNIX-like systems RASH is tested in Linux and I am using in Linux. It should work in other UNIX-like systems
like BSD.

Mac OS I guess it works. Not tested.

MS Windows Probably no one wants to use a shell tool in windows, but I try to avoid stuff that is platform specific.
Only the daemon launcher will not work on Windows but there is several ways to avoid using it. See rash
init --help.

5.2 Shells

RASH currently supports zsh and bash.

1 These modules do not support Python 3. They are not installed in if you use Python 3 and related functionality is disabled.

11

http://pypi.python.org/pypi/watchdog/
http://pypi.python.org/pypi/parsedatetime/


RASH Documentation, Release 0.1.3

12 Chapter 5. Dependency



CHAPTER 6

Design principle

RASH’s design is focused on sparseness. There are several stages of data transformation until you see the search
result, and they are done by separated processes.

First, rash record command dumps shell history in raw JSON record. This part of program does not touches to
DB to make process very fast. As there is no complex transformation in this command, probably in the future version
it is better to rewrite it entirely in shell function.

Second, rash daemon runs in background and watches the directory to store JSON record. When JSON record
arrives, it insert the data into database.

rash record and rash daemon are setup by simple shell snippet eval $(rash init).

Finally, you can search through command history using search interface such as rash search. This search is very fast
as you don’t read all JSON records in separated files.

+-------+ +--------+ +--------+ +--------+
| Shell | | Raw | | SQLite | | Search |
| hooks |-------->| JSON |-------->| DB |-------->| result |
+-------+ | record | +--------+ +--------+

+--------+

`rash record` `rash daemon` `rash search`
`rash show`

\------------------------------/ \------------/
`rash init` setups them search interface

13



RASH Documentation, Release 0.1.3

14 Chapter 6. Design principle



CHAPTER 7

License

RASH is licensed under GPL v3. See COPYING for details.

15



RASH Documentation, Release 0.1.3

16 Chapter 7. License



CHAPTER 8

More resources

8.1 RASH command line interface

8.1.1 Search interface

rash search

usage: rash search [-h] [--match-pattern GLOB] [--include-pattern GLOB]
[--exclude-pattern GLOB] [--match-regexp REGEXP]
[--include-regexp REGEXP] [--exclude-regexp REGEXP]
[--cwd DIR] [--cwd-glob GLOB] [--cwd-under DIR]
[--time-after TIME] [--time-before TIME]
[--duration-longer-than DURATION]
[--duration-less-than DURATION] [--include-exit-code CODE]
[--exclude-exit-code CODE] [--include-session ID]
[--exclude-session ID] [--match-environ-pattern ENV ENV]
[--include-environ-pattern ENV ENV]
[--exclude-environ-pattern ENV ENV]
[--match-environ-regexp ENV ENV]
[--include-environ-regexp ENV ENV]
[--exclude-environ-regexp ENV ENV] [--limit NUM]
[--no-unique] [--ignore-case] [--reverse]
[--sort-by {code,count,program_count,start,stop,success_count,success_ratio,time}]
[--sort-by-cwd-distance DIR] [--after-context NUM]
[--before-context NUM] [--context NUM]
[--context-type {time,session}] [--with-command-id]
[--with-session-id] [--format FORMAT] [-f]
[--output OUTPUT]
[pattern [pattern ...]]

Search command history.

optional arguments:
-h, --help show this help message and exit

Filter:
pattern Glob pattern to match substring of command. It is as

same as --match-pattern/-m except that the pattern is
going to be wrapped by `*`s. If you want to use strict
glob pattern that matches to entire command, use
--match-pattern/-m. (default: None)

17



RASH Documentation, Release 0.1.3

--match-pattern GLOB, -m GLOB
Only commands that match to this glob pattern are
listed. Unlike --include-pattern/-g, applying this
option multiple times does AND match. (default: [])

--include-pattern GLOB, -g GLOB
glob patterns that matches to commands to include.
(default: [])

--exclude-pattern GLOB, -G GLOB
glob patterns that matches to commands to exclude.
(default: [])

--match-regexp REGEXP, -M REGEXP
Only commands that matches to this grep pattern are
listed. Unlike --include-regexp/-e, applying this
option multiple times does AND match. (default: [])

--include-regexp REGEXP, -e REGEXP
Regular expression patterns that matches to commands
to include. (default: [])

--exclude-regexp REGEXP, -E REGEXP
Regular expression patterns that matches to commands
to exclude. (default: [])

--cwd DIR, -d DIR The working directory at the time when the command was
run. When given several times, items that match to one
of the directory are included in the result. (default:
[])

--cwd-glob GLOB, -D GLOB
Same as --cwd but it accepts glob expression.
(default: [])

--cwd-under DIR, -u DIR
Same as --cwd but include all subdirectories.
(default: [])

--time-after TIME, -t TIME
commands run after the given time (default: None)

--time-before TIME, -T TIME
commands run before the given time (default: None)

--duration-longer-than DURATION, -S DURATION
commands that takes longer than the given time
(default: None)

--duration-less-than DURATION, -s DURATION
commands that takes less than the given time (default:
None)

--include-exit-code CODE, -x CODE
include command which finished with given exit code.
(default: [])

--exclude-exit-code CODE, -X CODE
exclude command which finished with given exit code.
(default: [])

--include-session ID, -n ID
include command which is issued in given session.
(default: [])

--exclude-session ID, -N ID
exclude command which is issued in given session.
(default: [])

--match-environ-pattern ENV ENV
select command which associated with environment
variable that matches to given glob pattern. (default:
[])

--include-environ-pattern ENV ENV, -v ENV ENV
include command which associated with environment

18 Chapter 8. More resources



RASH Documentation, Release 0.1.3

variable that matches to given glob pattern. (default:
[])

--exclude-environ-pattern ENV ENV, -V ENV ENV
exclude command which associated with environment
variable that matches to given glob pattern. (default:
[])

--match-environ-regexp ENV ENV
select command which associated with environment
variable that matches to given glob pattern. (default:
[])

--include-environ-regexp ENV ENV, -w ENV ENV
include command which associated with environment
variable that matches to given glob pattern. (default:
[])

--exclude-environ-regexp ENV ENV, -W ENV ENV
exclude command which associated with environment
variable that matches to given glob pattern. (default:
[])

--limit NUM, -l NUM maximum number of history to show. -1 means no limit.
(default: 10)

--no-unique, -a Include all duplicates. (default: True)
--ignore-case, -i Do case insensitive search. (default: False)

Sorter:
--reverse, -r Reverse order of the result. By default, most recent

commands are shown. (default: False)
--sort-by {code,count,program_count,start,stop,success_count,success_ratio,time}

Sort keys `count`: number of the time command is
executed; `success_count`: number of the time command
is succeeded; `program_count`: number of the time

*program* is used; `start`(=`time`): the time command
is executed; `stop`: the time command is finished;
`code`: exit code of the command; Note that --sort-
by=count cannot be used with --no-unique. If you don't
give anything, it defaults to `count`. However, if you
give this option at least once, the default is ignored
(i.e., the result is *not* sorted by `count` unless
you give it explicitly.). (default: [])

--sort-by-cwd-distance DIR, -y DIR
Sort by distance of recorded cwd fron DIR. Commands
run at DIR are listed first, then commands run at one
level down or one level up directories, and then two
level down/up, and so on. (default: None)

Modifier:
--after-context NUM, -A NUM

Print NUM commands executed after matching commands.
See also --context option. (default: None)

--before-context NUM, -B NUM
Print NUM commands executed before matching commands.
See also --context option. (default: None)

--context NUM, -C NUM
Print NUM commands executed before and after matching
commands. When this option is given --no-unique is
implied and --sort-by is ignored. (default: None)

--context-type {time,session}
`session`: commands executed in the same shell
session; `time`: commands executed around the same

8.1. RASH command line interface 19



RASH Documentation, Release 0.1.3

time; (default: time)

Formatter:
--with-command-id Print command ID number. When this is set, --format

option has no effect. If --with-session-id is also
specified, session ID comes at the first column then
command ID comes the next column. (default: False)

--with-session-id Print session ID number. When this is set, --format
option has no effect. See also: --with-command-id
(default: False)

--format FORMAT Python string formatter. Available keys: command,
exit_code, pipestatus (a list), start, stop, cwd,
command_history_id, session_history_id. See also:
http://docs.python.org/library/string.html#format-
string-syntax (default: {command}\n)

-f Set formatting detail. This can be given multiple
times to make more detailed output. For example,
giving it once equivalent to passing --with-command-id
and one more -f means adding --with-session-id.
(default: 0)

Misc:
--output OUTPUT Output file to write the results in. Default is

stdout. (default: -)

rash show

usage: rash show [-h] command_history_id [command_history_id ...]

Show detailed command history by its ID.

positional arguments:
command_history_id Integer ID of command history.

optional arguments:
-h, --help show this help message and exit

rash isearch

usage: rash isearch [-h] [--query QUERY] [--query-template QUERY_TEMPLATE]
[--caret CARET]
[base_query [base_query ...]]

Interactive history search that updated as you type.

The query for this program is the same as the one for
``rash search`` command.

You need percol_ to use this command.

_percol: https://github.com/mooz/percol

If you use zsh, you can setup a keybind like this to quickly
launch iserch and execute the result.::

20 Chapter 8. More resources



RASH Documentation, Release 0.1.3

# Type `Ctrl-x r` to start isearch
bindkey "^Xr" rash-zle-isearch

If you like command or you are not using zsh, you can add
something like the following in your rc file to start and
execute the chosen command.

rash-isearch(){
eval "$(rash isearch)"

}

To pass long and complex query, give them after "--",
like this.::

rash isearch -- \
--cwd . \
--exclude-pattern "*rash *" \
--include-pattern "*test*" \
--include-pattern "tox*" \
--include-pattern "make *test*"

positional arguments:
base_query The part of query that is not shown in UI and is

impossible to rewrite in this session. Useful for
putting long and complex query. (default: None)

optional arguments:
-h, --help show this help message and exit
--query QUERY, -q QUERY

default query (default: None)
--query-template QUERY_TEMPLATE

Transform default query using Python string format.
(default: None)

--caret CARET caret position (default: None)

8.1.2 System setup interface

rash init

usage: rash init [-h] [--shell SHELL] [--no-daemon]
[--daemon-opt DAEMON_OPTIONS]
[--daemon-outfile DAEMON_OUTFILE]

Configure your shell.

Add the following line in your shell RC file and then you are
ready to go::

eval $(rash init)

To check if your shell is supported, simply run::

rash init --no-daemon

If you want to specify shell other than $SHELL, you can give
--shell option::

8.1. RASH command line interface 21



RASH Documentation, Release 0.1.3

eval $(rash init --shell zsh)

By default, this command also starts daemon in background to
automatically index shell history records. To not start daemon,
use --no-daemon option like this::

eval $(rash init --no-daemon)

To see the other methods to launch the daemon process, see
``rash daemon --help``.

optional arguments:
-h, --help show this help message and exit
--shell SHELL name of shell you are using. directory before the last

/ is discarded. It defaults to $SHELL. (default:
/bin/bash)

--no-daemon Do not start daemon. By default, daemon is started if
there is no already running daemon. (default: False)

--daemon-opt DAEMON_OPTIONS
Add options given to daemon. See "rash daemon --help"
for available options. It can be specified many times.
Note that --no-error is always passed to the daemon
command. (default: [])

--daemon-outfile DAEMON_OUTFILE
Path to redirect STDOUT and STDERR of daemon process.
This is mostly for debugging. (default: /dev/null)

rash daemon

usage: rash daemon [-h] [--no-error] [--restart] [--record-path RECORD_PATH]
[--keep-json] [--check-duplicate] [--use-polling]
[--log-level {CRITICAL,ERROR,WARNING,INFO,DEBUG}]

Run RASH index daemon.

This daemon watches the directory ``~/.config/rash/data/record``
and translate the JSON files dumped by ``record`` command into
sqlite3 DB at ``~/.config/rash/data/db.sqlite``.

``rash init`` will start RASH automatically by default.
But there are alternative ways to start daemon.

If you want to organize background process in one place such
as supervisord_, it is good to add `--restart` option to force
stop other daemon process if you accidentally started it in
other place. Here is an example of supervisord_ setup::

[program:rash-daemon]
command=rash daemon --restart

.. _supervisord: http://supervisord.org/

Alternatively, you can call ``rash index`` in cron job to
avoid using daemon. It is useful if you want to use RASH
on NFS, as it looks like watchdog does not work on NFS.::

22 Chapter 8. More resources



RASH Documentation, Release 0.1.3

# Refresh RASH DB every 10 minutes

*/10 * * * * rash index

optional arguments:
-h, --help show this help message and exit
--no-error Do nothing if a daemon is already running. (default:

False)
--restart Kill already running daemon process if exist.

(default: False)
--record-path RECORD_PATH

specify the directory that has JSON records. (default:
None)

--keep-json Do not remove old JSON files. It turns on --check-
duplicate. (default: False)

--check-duplicate do not store already existing history in DB. (default:
False)

--use-polling Use polling instead of system specific notification.
This is useful, for example, when your $HOME is on NFS
where inotify does not work. (default: False)

--log-level {CRITICAL,ERROR,WARNING,INFO,DEBUG}
logging level. (default: None)

rash locate

usage: rash locate [-h] [--no-newline] [--output OUTPUT]
{base,config,db,daemon_pid,daemon_log}

Print location of RASH related file.

positional arguments:
{base,config,db,daemon_pid,daemon_log}

Name of file to show the path (e.g., config).

optional arguments:
-h, --help show this help message and exit
--no-newline, -n do not output the trailing newline. (default: False)
--output OUTPUT Output file to write the results in. Default is

stdout. (default: -)

rash version

usage: rash version [-h]

Print version number.

optional arguments:
-h, --help show this help message and exit

8.1. RASH command line interface 23



RASH Documentation, Release 0.1.3

8.1.3 Low level commands

rash record

usage: rash record [-h] [--record-type {command,init,exit}]
[--command COMMAND] [--cwd CWD] [--exit-code EXIT_CODE]
[--pipestatus PIPESTATUS [PIPESTATUS ...]] [--start START]
[--stop STOP] [--session-id SESSION_ID]
[--print-session-id]

Record shell history.

optional arguments:
-h, --help show this help message and exit
--record-type {command,init,exit}

type of record to store. (default: command)
--command COMMAND command that was ran. (default: None)
--cwd CWD Like $PWD, but callee can set it to consider command

that changes directory (e.g., cd). (default: None)
--exit-code EXIT_CODE

exit code $? of the command. (default: None)
--pipestatus PIPESTATUS [PIPESTATUS ...]

$pipestatus (zsh) / $PIPESTATUS (bash) (default: None)
--start START the time COMMAND is started. (default: None)
--stop STOP the time COMMAND is finished. (default: None)
--session-id SESSION_ID

RASH session ID generated by --print-session-id. This
option should be used with `command` or `exit`
RECORD_TYPE. (default: None)

--print-session-id print generated session ID to stdout. This option
should be used with `init` RECORD_TYPE. (default:
False)

rash index

usage: rash index [-h] [--keep-json] [--check-duplicate] [record_path]

Convert raw JSON records into sqlite3 DB.

Normally RASH launches a daemon that takes care of indexing.
See ``rash daemon --help``.

positional arguments:
record_path specify the directory that has JSON records. (default:

None)

optional arguments:
-h, --help show this help message and exit
--keep-json Do not remove old JSON files. It turns on --check-

duplicate. (default: False)
--check-duplicate do not store already existing history in DB. (default:

False)

24 Chapter 8. More resources



RASH Documentation, Release 0.1.3

8.1.4 ZSH functions

rash-zle-isearch

To setup Ctrl-x r to start rash isearch, add this to your .zshrc:

bindkey "^Xr" rash-zle-isearch

8.2 RASH configuration

class rash.config.Configuration
RASH configuration interface.

If you define an object named config in the configuration file, it is going to be loaded by RASH. config
must be an instance of Configuration.

configuration file In unix-like systems, it’s ~/.config/rash/config.py or different place if you set
XDG_CONFIG_HOME. In Mac OS, it’s ~/Library/Application Support/RASH/config.py.
Use rash locate config to locate the exact place.

Example:

>>> from rash.config import Configuration
>>> config = Configuration()
>>> config.isearch.query = '-u .'

Here is a list of configuration variables you can set:

Configuration variables
config.record.environ Environment variables to record.
config.search.alias Search query alias.
config.search.kwds_adapter Transform keyword arguments.
config.isearch.query Default isearch query.
config.isearch.query_template Transform default query.
config.isearch.base_query Default isearch base query.

class rash.config.RecordConfig
Recording configuration.

environ = None
Environment variables to record.

Each key (str) represent record type (init/exit/command). Each value (list of str) is a list of environment
variables to record.

Example usage:

>>> config = Configuration()
>>> config.record.environ['command'] += ['VIRTUAL_ENV', 'PYTHONPATH']

class rash.config.SearchConfig
Search configuration.

alias = None
Search query alias.

It must be a dict-like object that maps a str to a list of str when “expanding” search query.

Example:

8.2. RASH configuration 25



RASH Documentation, Release 0.1.3

>>> config = Configuration()
>>> config.search.alias['test'] = \
... ["--exclude-pattern", "*rash *", "--include-pattern", "*test*"]

then,:

rash search test

is equivalent to:

rash search --exclude-pattern "*rash *" --include-pattern "*test*"

kwds_adapter = None
A function to transform keyword arguments.

This function takes a dictionary from command line argument parser and can modify the dictionary to do
whatever you want to do with it. It is much more lower-level and powerful than alias. This function
must return the modified, or possibly new dictionary.

Example definition that does the same effect as the example in alias:

>>> def adapter(kwds):
... if 'test' in kwds.get('pattern', []):
... kwds['pattern'] = [p for p in kwds['pattern']
... if p != 'test']
... kwds['exclude_pattern'].append("*rash *")
... kwds['include_pattern'].append("*test*")
... return kwds
...
>>> config = Configuration()
>>> config.search.kwds_adapter = adapter

class rash.config.ISearchConfig
Configure how rash isearch is started.

See also SearchConfig. Once isearch UI is started, SearchConfig controls how search query is inter-
preted. For example, aliases defined in SearchConfig can be used in isearch.

query = None
Set default value (str) for --query option.

If you want to start isearch with the query -d . (only list the command executed at this directory), use
the following configuration:

>>> config = Configuration()
>>> config.isearch.query = '-d . '

As rash-zle-isearch passes the current line content to --query which override this setting, you
need to use query_template instead if you want to configure the default query.

query_template = None
Transform default query using Python string format.

The string format should have only one field {0}. The query given by -query or the one specified by
query fills that filed. Default value is do-nothing template ’{0}’.

>>> config = Configuration()
>>> config.isearch.query_template = '-d . {0}'

base_query = None
Set default value (list of str) for --base-query option.

26 Chapter 8. More resources



RASH Documentation, Release 0.1.3

8.3 Tips

8.3.1 Define Zsh ZLE widget

You can use the ZLE widget rash-zle-isearch loaded by rash init to define your own modified widget. It takes argu-
ments and passes them to rash isearch directly. Here is a recipe for “Do What I Mean” search:

rash-zle-dwim(){
rash-zle-isearch --query-template "-x 0 -d . @ {0} "

}
zle -N rash-zle-dwim
bindkey "^Xs" rash-zle-dwim

In the configuration file, you should define an alias called @ like this (see also config.search.alias):

config.search.alias['@'] = [...] # some complex query

8.3.2 Using RASH in old version of zsh

RASH depends on precmd_functions / preexec_functions hooks in zsh. In old version zsh doesn’t have
it. However, you can use RASH by adding this in your .zshrc.

precmd(){
for f in $precmd_functions
do

"$f"
done

}

preexec(){
for f in $preexec_functions
do

"$f"
done

}

• genindex

• modindex

• search

8.3. Tips 27



RASH Documentation, Release 0.1.3

28 Chapter 8. More resources



Python Module Index

r
rash, 1
rash.config, 25

29



RASH Documentation, Release 0.1.3

30 Python Module Index



Index

A
alias (rash.config.SearchConfig attribute), 25

B
base_query (rash.config.ISearchConfig attribute), 26

C
Configuration (class in rash.config), 25
configuration file, 25

E
environ (rash.config.RecordConfig attribute), 25
environment variable

XDG_CONFIG_HOME, 25

I
ISearchConfig (class in rash.config), 26

K
kwds_adapter (rash.config.SearchConfig attribute), 26

Q
query (rash.config.ISearchConfig attribute), 26
query_template (rash.config.ISearchConfig attribute), 26

R
rash (module), 1
rash.config (module), 25
RecordConfig (class in rash.config), 25

S
SearchConfig (class in rash.config), 25

X
XDG_CONFIG_HOME, 25

31


	What is this?
	Install
	Setup
	Usage
	Searching history – rash search
	Showing detailed information – rash show
	Interactive search – rash isearch

	Dependency
	Platforms
	Shells

	Design principle
	License
	More resources
	RASH command line interface
	RASH configuration
	Tips

	Python Module Index

